Senior Petroleum Engineering Design

Recommendations for Developing a Barnett Gas Field Fort Worth Basin, Texas

> Group 2 Jason Zhang April 30, 2018

Chemical and Petroleum Engineering Department

Outline

- **Cutline**
• Motivation and Objective
• Study Area
• Workflow
-
-
- **Cutline**
• Motivation and Objective
• Study Area
• Workflow
• Rock Quality/Petrophysical Evaluat • Motivation and Objective
• Motivation and Objective
• Study Area
• Workflow
• Completion Quality Evaluation → H • Motivation and Objective
• Study Area
• Workflow
• Rock Quality/Petrophysical Evaluation \rightarrow Geological Modelling
• Completion Quality Evaluation \rightarrow Hydraulic Fracture Modelling
• Field Evaluation \rightarrow P_{so} Well Det • Motivation and Objective
• Study Area
• Workflow
• Rock Quality/Petrophysical Evaluation \rightarrow Geological Modelling
• Completion Quality Evaluation \rightarrow Hydraulic Fracture Modelling
• Field Evaluation \rightarrow P₅₀ Well Det • Motivation and Objective
• Study Area
• Workflow
• Rock Quality/Petrophysical Evaluation → Geological Modellin
• Completion Quality Evaluation → Hydraulic Fracture Modellin
• Field Evaluation → P₅₀ Well Determination
 • Motivation and Objective
• Study Area
• Workflow
• Rock Quality/Petrophysical Evaluation \rightarrow Geological Modelling
• Completion Quality Evaluation \rightarrow Hydraulic Fracture Modelling
• Field Evaluation \rightarrow P₅₀ Well Det • Motivation and Objective
• Study Area
• Workflow
• Rock Quality/Petrophysical Evaluation \rightarrow Ge
• Completion Quality Evaluation \rightarrow Hydraulic F
• Field Evaluation \rightarrow P₅₀ Well Determination
• Operation Quality Eval • Motivation and Objective

• Study Area

• Workflow

• Rock Quality/Petrophysical Evaluation \rightarrow Ge

• Completion Quality Evaluation \rightarrow Hydraulic

• Field Evaluation \rightarrow P₅₀ Well Determination

• Operation Quality • Study Area

• Workflow

• Rock Quality/Petrophysical Evaluation \rightarrow Geological

• Completion Quality Evaluation \rightarrow Hydraulic Fracture

• Field Evaluation \rightarrow P₅₀ Well Determination

• Operation Quality Evaluation • Workflow
• Rock Quality/Petrophysical Evaluatio
• Completion Quality Evaluation \rightarrow Hy
• Field Evaluation \rightarrow P₅₀ Well Determi
• Operation Quality Evaluation \rightarrow DC/
• Well Spacing Optimization
• Economic Viability
-
-
-
-
-
-
-

Motivation and Objective

Motivation: Operation "Stealthy Paws"

- Phase 1: Locate the package
- Phase 2: The Stakeout
- Phase 3: Steal Kalantari's dog
- Phase 4: Pet it.
- Phase 5: Return

The Barnett Shale-Gas Play

Play: Barnett shale Location: Northwest of Dallas Field: Newark East

Field History

- Field His

 Founded by MEC in

1981,bought out by Devon

in 2002 1981, bought out by Devon $\frac{1}{2}$ in 2002 • Founded by MEC in

1981,bought out by Devon

in 2002

• Original target was the Viola

and Ellenburger formation

• Newark East field: Started in

Mise south averaging into
-
- Founded by MEC in

1981, bought out by Devon

in 2002

 Original target was the Viola

and Ellenburger formation

 Newark East field: Started in

Wise county, expansion into

Denton Wise county, expansion into **Denton** • Founded by MEC in

1981, bought out by Devon

in 2002

• Original target was the Viola

and Ellenburger formation

• Newark East field: Started in

Wise county, expansion into

Denton

• 2006: Largest field in Texas,

3 • Founded by MEC in

1981, bought out by Devon

in 2002

• Original target was the Viola

and Ellenburger formation

• Newark East field: Started in

Wise county, expansion into

Denton

• 2006: Largest field in Texas,

3
- 3 rd in the nation.
- improved field performance.

Depositional Setting

The University of Kansas

Economics

- **Economics**
• Higher gas price and horizontal
• Contributes 8% of natural gas to drilling
- **Economics**
• Higher gas price and horizontal
• Contributes 8% of natural gas to
• Total production estimated at U.S **Economic**
• Higher gas price and horizontal
• Contributes 8% of natural gas to
• Total production estimated at
• Total production estimated at
• Updated estimated 39 TCF
- 4TCF in 2008
-

Study Area

Devon Energy's M14 Asset Area:

-
- -
-

Study Area

Petrophysical Evaluation

Shale Volume:

$$
V_{SH,GR} = \frac{\gamma_{matrix} - \gamma_{log}}{\gamma_{matrix} - \gamma_{shape}}
$$

\n
$$
\gamma_{matrix} = 23 \text{ API}
$$

\n
$$
\gamma_{share} = 130 \text{ API}
$$

\n
$$
TOC = (A/\rho_b) - B
$$

\n
$$
A = 154.497
$$

\n
$$
B = 57.261
$$

\n
$$
\rho_b - \rho_{ma} + TOC(\rho_{ma} - \rho_{TOC})
$$

 γ_{matrix} = 23 API γ_{shale} = 130 API

Total Organic Content⁽¹⁾:

$$
TOC = \left(\frac{A}{\rho_b}\right) - B
$$

$$
A = 154.497 B = 57.261
$$

Porosity⁽²⁾:

$$
V_{SH,GR} = \frac{\gamma_{matrix} - \gamma_{log}}{\gamma_{matrix} - \gamma_{log}}
$$

\n
$$
\gamma_{halle} = 23 \text{ API}
$$

\n
$$
V_{Shale} = 130 \text{ API}
$$

\n
$$
TOC = (A/\rho_b) - B
$$

\n
$$
A = 154.497
$$

\n
$$
B = 57.261
$$

\n
$$
\Phi = \frac{\rho_b - \rho_{ma} + TOC(\rho_{ma} - \rho_{TOC})}{\rho_g(1 - S_w) + \rho_w S_w - \rho_{ma}}
$$

\n
$$
\rho_{ma} = 2.71 \text{ g/cc}
$$

\n
$$
\rho_{fluid} = 1.0 \text{ g/cc}
$$

\n
$$
\rho_{fuid} = 1.0 \text{ g/cc}
$$

\n
$$
\rho_{g} = 0.3 \text{ g/cc}
$$

\n
$$
\rho_g = 0.3 \text{ g/sec}
$$

\n
$$
A
$$

\n
$$
S_w^n = \frac{R_w}{\phi^m \times R_t}
$$

\n
$$
R_w = 0.03 \text{ Ωm}^{(3)}
$$

\n
$$
n = 2
$$

\n
$$
m = 1.9
$$

\n
$$
141
$$

 ρ_{ma} = 2.71 g/cc $\rho_{fluid} = 1.0$ g/cc ρ_{TOC} = 1.4 g/cc $\rho_g = 0.3$ g/cc

Water Saturation $(3,4)$:

$$
S_w^n = \frac{R_w}{\phi^m \times R_t}
$$

$$
R_w = 0.03 \text{ }\Omega \text{m}^{(3)} \nn = 2 \nm = 1.9
$$

-
-
-

Rock Quality Evaluation

Multi-Mineral Lithology Analysis:

Geological Model

Completion Quality Evaluation

Hydraulic Fracture Design

• The purpose of doing a hydraulic fracture in a shale formation is to widen the pore space in order for hydrocarbons to mobilize.

--Montgomery et al., 2005

https://www.watertechonline.com/distillation-hydraulic-fracturing-flowback-treatment/

Hard Data

Simulated Frac Model

Field Evaluation

P₅₀ Well Determination

- P_{50} Well Determination

 P_{50} is targeted because it is close to the mean

value of the data. value of the data.
- P_{50} is targeted because it is close to the mean
value of the data.
• Knowing the P_{50} well allows for the best average
value to be used as a reference as to what is to be
expected value to be used as a reference as to what is to be expected.

Process

- **Process**
• The production indicator chosen was 800 days
of cumulative gas. of cumulative gas. **Process**
• The production indicator chosen was
of cumulative gas.
• Normalized production data.
• Identified P₅₀ well based on cumula **Process**
• The production indicator chosen was 800 days
of cumulative gas.
• Normalized production data.
• Identified P₅₀ well based on cumulative
production, linear flow, and proppant data.
-
- production, linear flow, and proppant data.

P₅₀ Cum. Production/Lat. Length

P₅₀ Linear Flow/Lat. Length

P₅₀ Proppant/Stage

P₅₀ (800 Days)

P₅₀ Estimation (0-800 days)

Chosen P₅₀ Well

Operation Quality Evaluation

Field Production Data

Decline Curve Analysis

• Methodology: Multiple decline curves were applied to the 5 target wells and field as a whole in IHS Harmony. The goal was to determine the representative trends that projects the well's economic life and forecast future cumulative production.

Decline Curve Analysis

• Parameters:

- Devon Energy has a set cutoff rate of 20 Mscf/day for gas wells
- **Decline Curve Analysis**
 Parameters:

 Devon Energy has a set cutoff rate of 20 Mscf/day for gas wells

 By using DCA, it is predicted that gas production will fall to 900Bscf/yr by 2030

from the peak of about 2Tscf/ from the peak of about 2Tscf/yr
— From this DCA forcast, it is likely the Barnett field as a whole will no longer be a major contributor
	- to natural gas production in the year 2030

• Reasons for production decline of Barnett shale gas wells

- Due to a shrinkage of viable space and the decrease of sweet spots, future drilling in the Barnett has been waning
- Production analysis has found that older wells tend to have better decline performance than new wells
— Likely due to poorer reservoir rock quality and well interface (well spacing and drainage area)
	-

**• Barry Philippe Curve Analysis

• Arps Equations – Exponential, Harmonic, Hyperbolic
• Power-Law Exponential Method
• Duong Method** Decline Curve Analysis

• Curves Considered:

- Arps Equations Exponential, Harmonic, Hyperbolic
• Power-Law Exponential Method
• Duong Method
• Stretched-Exponential Production Decline
— Known to be conservative prediction for decline models in tight formations
3e
- Power-Law Exponential Method
- Duong Method
- Stretched-Exponential Production Decline
	- Known to be conservative prediction for decline models in tight formations

• Best Fits:

- Stretched Exponential "Best Fit Whole" Matched 5/5 target wells within P 50 range
	-
	- Underestimates EUR
- -
	- Overestimates EUR

• Decline Curve Analysis
 Stretched Exponential

• Calculated from Observed behaviors of q(t)

• n is found and τ is calculated

• $\tau = e^{\frac{-\ln\text{intersect}}{n}}$

• $\tau = e^{\frac{-\ln\text{intersect}}{n}}$ Decline Curve Analysis

Stretched Exponential

Calculated from Observed behaviors of q(t)

$$
q(t) = q_1 e^{-(\frac{t}{\tau})^n}
$$

$$
-\tau = e^{\frac{-\ln\text{intersect}}{n}}
$$

$$
-\tau = (\frac{n}{D_i})^{\frac{1}{n}}
$$

Decline Curve Analysis

Decline Curve Analysis

Conclusions:

- Duong's method is generally accurate for Barnett unconventional wells, especially in early production
- Stretched exponential produces similar results
- Hyperbolic and Harmonic decline (and b>1) are useful in modelling early flow regimes
- The stretched exponential model with calculated and best fit whole curves yielded realistic forecasts that agreed with RTA and the probabilistic analyses

RTA

Background and Theory and Theory

Flow Regimes of Interest:

Bilinear Flow:

-
-
-

*Can occur prevalently in naturally fractured systems or when $x_f > h_f$

Linear Flow:

-
-
- have stabilized

Boundary Dominated Flow:

-
-
- have been realized

(1) Fekete.com

RTA: Johnson WD 'A' (SA) 42H

Well Spacing Optimization

Base Model

Base Properties:

Economic Viability

Acknowledgements **Acknowledgements
• We would like to thank Dr. Amirmasoud Kalantari Dahaghi
• Devon Energy for the provided data**

-
-
- Acknowledgements
• We would like to thank Dr. Amirmasoud Kalantari Daha
• Devon Energy for the provided data
• Schlumberger, IHS Harmony, Gohfer, CMG for providin Acknowledgements
• We would like to thank Dr. Amirmasoud Kalantari Dahaghi
• Devon Energy for the provided data
• Schlumberger, IHS Harmony, Gohfer, CMG for providing
academic licenses academic licenses

Thank you!

References

- **1.** J. Schmoker and T. Hester, "Organic Carbon in Bakken Formation, United States Portion of Williston Basin,"
The American Association of Petroleum Geologists Bulletin, vol. 67, no. 12, pp. 2165-2174, December 1983.
2. C The American Association of Petroleum Geologists Bulletin, vol. 67, no. 12, pp. 2165-2174, December 1983.
- and Producing Shale Gas Resources," in SPE Unconventional Gas Conference, Pittsburg, PA, 2010.
- **2. PEPPERS
2. C. Schmoker and T. Hester, "Organic Carbon in Bakken Formation, United States Portion of Williston Basin,"
2. C. Sondergeld, K. Newsham, J. Comisky, M. Rice and C. Rai, "Petrophysical Considerations in Evalu 3.** J. Schmoker and T. Hester, "Organic Carbon in Bakken Formation, United States Portion of Williston Basin,"
The American Association of Petroleum Geologists Bulletin, vol. 67, no. 12, pp. 2165-2174, December 1983.
2. C of Petroleum Engineers, Dallas, TX, 1941.
- Journal of Natural Gas Science and Engineering, pp. 800-810, November 2016.
- 1. J. Schmoker and T. Hester, "Organic Carbon in Bakken Formation, United States Portion of Williston Basin,"

The American Association of Petroleum Geologists Bulletin, vol. 67, no. 12, pp. 2165-2174, December 1983.

2. C **FACTORS**

5. J. Schmoker and T. Hester, "Organic Carbon in Bakken Formation, United States Portion of Williston Basin,"

The American Association of Petroleum Geologists Bulletin, vol. 67, no. 12, pp. 2165-2174, December Shale-gas succession in the Fort Woth Basin, Texas," The American Association of Petroleum Geologists Bulletin, vol. 67, no. 12, pp. 2165-2174, December 1983.
C. Sondergeld, K. Newsham, J. Comisky, M. Rice and C. Rai, "Pet Bulletin, vol. 91, no. 4, pp. 579-601, April 2007.

Questions? Photoelectric Logging

- **Questions? Photoelectric Logging**
• Measures the average atomic number of the elements in formation
as the Photoelectric Effect (PE). Known PE values for common
lithologies are generally very accurate. as the Photoelectric Effect (PE). Known PE values for common lithologies are generally very accurate. **Questions? Photoelectric Logging**
• Measures the average atomic number of the elements in formation
as the Photoelectric Effect (PE). Known PE values for common
ithologies are generally very accurate.
• Usually combined **Questions? Photoelectric Logging**
• Measures the average atomic number of the elements in formation
as the Photoelectric Effect (PE). Known PE values for common
lithologies are generally very accurate.
• Usually combined • Musually combined versus the plotted versus the plotted versus the plotted versus the plotted versus the calibrative for common lithologies are generally very accurate.
• Usually combined with density for a Litho-densit
-
- of matrix rock (U_{MA}) can be calculated:

 $U = PF * RHOR$ $U=U_{MA}$ (1-PHIE-VSH)

lithology types.

Source: Crain's Petrophysical Handbook (https://www.spec2000.net/13-lithpdn.htm)

Questions? Photoelectric Logging

Johnson WD 'A' (SA) 41H

