Senior Petroleum Engineering Design

Recommendations for Developing a Barnett Gas Field Fort Worth Basin, Texas

> Group 2 Jason Zhang April 30, 2018

Chemical and Petroleum Engineering Department

Outline

- Motivation and Objective
- Study Area
- Workflow
- Rock Quality/Petrophysical Evaluation → Geological Modelling
- Completion Quality Evaluation → Hydraulic Fracture Modelling
- Field Evaluation $\rightarrow P_{50}$ Well Determination
- Operation Quality Evaluation \rightarrow DCA, RTA
- Well Spacing Optimization
- Economic Viability of Development
- Conclusions and Recommendations
- Acknowledgements

Motivation and Objective

Motivation: Operation "Stealthy Paws"

- Phase 1: Locate the package
- Phase 2: The Stakeout
- Phase 3: Steal Kalantari's dog
- Phase 4: Pet it.
- Phase 5: Return

The Barnett Shale-Gas Play

Play: Barnett shale Location: Northwest of Dallas Field: Newark East

Field History

- Founded by MEC in 1981,bought out by Devon in 2002
- Original target was the Viola and Ellenburger formation
- Newark East field: Started in Wise county, expansion into Denton
- 2006: Largest field in Texas, 3rd in the nation.
- Technology advances improved field performance.

Barnett Shale		
Geologic Age	Late Mississippian	
Area size,mile squre	5,400(4,065 active)	
Depth, ft	6,500-8,500	
Thickness, ft	100-600	
TOC,%	4-5	
Thermal Maturity, Ro%	1.3-2.1	
Porosity, %	4-8	
Well Avg.IP,MMcfd	2.5	
Horizontal lateral, ft	3,950-4,350	
TRR,Tcf	43	
EUR/Well, Bcf	1.6	
Pressure Gradient,psi/ft	0.43-0.45	
Well Spacing, AC	116	
First Production	1981	

Depositional Setting

The University of Kansas

Economics

- Higher gas price and horizontal drilling
- Contributes 8% of natural gas to U.S
- Total production estimated at 4TCF in 2008
- Updated estimated 39 TCF

Study Area

Devon Energy's M14 Asset Area:

- Located in Wise County, Texas
- 81 deviated and horizontal wells
 - Focus group of 5 core wells
- Targets reserves in the Newark East Gas Field

Study Area

	Date Competed	I.P. (MSCFD)	Gp (MMSCF)	Wp (MSTB)
33H	9/26/2008	2007	1298	29.59
34H	8/11/2008	1691	1207	22.57
41H	4/22/2014	755	581	7.47
42HA	5/12/2014	3609	1216	33.87
43HB	5/12/2014	3635	1188	25.10

Rock Quality/Petrophysical Evaluation

Petrophysical Evaluation

Shale Volume:

$$V_{SH,GR} = \frac{\gamma_{matrix} - \gamma_{log}}{\gamma_{matrix} - \gamma_{shale}}$$

$$\gamma_{matrix} = 23 \text{ API}$$

 $\gamma_{shale} = 130 \text{ API}$

Total Organic Content ⁽¹⁾:

$$TOC = (A/\rho_b) - B$$

$$A = 154.497$$

 $B = 57.261$

Porosity ⁽²⁾:

$$\phi = \frac{\rho_b - \rho_{ma} + TOC(\rho_{ma} - \rho_{TOC})}{\rho_g(1 - S_w) + \rho_w S_w - \rho_{ma}}$$

 $\begin{array}{l} \rho_{ma} = 2.71 \ \mathrm{g/cc} \\ \rho_{fluid} = 1.0 \ \mathrm{g/cc} \\ \rho_{TOC} = 1.4 \ \mathrm{g/cc} \\ \rho_{g} = 0.3 \ \mathrm{g/cc} \end{array}$

Water Saturation ^(3,4):

$$S_w^n = \frac{R_w}{\phi^m \times R_t}$$

$$R_w = 0.03 \ \Omega m^{(3)}$$

 $n = 2$
 $m = 1.9$

11

(1) Schmoker, 1983

- (2) Sonergeld *et. al,* 2010 (modified by Lewis, 2018)
- (3) Archie, 1941
- (4) Zhang, 2016

Rock Quality Evaluation

Multi-Mineral Lithology Analysis:

Geological Model

Completion Quality Evaluation

Hydraulic Fracture Design

 The purpose of doing a hydraulic fracture in a shale formation is to widen the pore space in order for hydrocarbons to mobilize.

--Montgomery et al., 2005

https://www.watertechonline.com/distillation-hydraulic-fracturing-flowback-treatment/

Hard Data

		NAME	Effective Lateral Length
•	41H 42HA 43HB	JOHNSON W D `A` 33H	247
	aro only using	JOHNSON W D `A` 34H	188
		JOHNSON W D 'A' (SA) 41H	479
	100 mesh and	JOHNSON W D 'A' (SA) 42HA	544
40/70	40/70	JOHNSON W.D. 'A' (SA)43HB	565

Simulated Frac Model

Field Evaluation

P₅₀ Well Determination

- P_{50} is targeted because it is close to the mean value of the data.
- Knowing the P₅₀ well allows for the best average value to be used as a reference as to what is to be expected.

Process

- The production indicator chosen was 800 days of cumulative gas.
- Normalized production data.
- Identified P₅₀ well based on cumulative production, linear flow, and proppant data.

P₅₀ Cum. Production/Lat. Length

P₅₀ Linear Flow/Lat. Length

P₅₀ Proppant/Stage

P₅₀ (800 Days)

P₅₀ Estimation (0-800 days)

Chosen P₅₀ Well

Operation Quality Evaluation

Field Production Data

• **Methodology:** Multiple decline curves were applied to the 5 target wells and field as a whole in IHS Harmony. The goal was to determine the representative trends that projects the well's economic life and forecast future cumulative production.

• Parameters:

- Devon Energy has a set cutoff rate of 20 Mscf/day for gas wells
- By using DCA, it is predicted that gas production will fall to 900Bscf/yr by 2030 from the peak of about 2Tscf/yr
 - From this DCA forcast, it is likely the Barnett field as a whole will no longer be a major contributor to natural gas production in the year 2030

Reasons for production decline of Barnett shale gas wells

- Due to a shrinkage of viable space and the decrease of sweet spots, future drilling in the Barnett has been waning
- Production analysis has found that older wells tend to have better decline performance than new wells
 - Likely due to poorer reservoir rock quality and well interface (well spacing and drainage area)

Curves Considered:

- Arps Equations Exponential, Harmonic, Hyperbolic
- Power-Law Exponential Method
- Duong Method
- Stretched-Exponential Production Decline
 - Known to be conservative prediction for decline models in tight formations

Best Fits:

- Stretched Exponential "Best Fit Whole"
 - Matched 5/5 target wells within P 50 range
 - Underestimates EUR
- Stretched Exponential with calculated values
 - Matched 4/5 target wells within P50 range
 - Overestimates EUR

Stretched Exponential

Calculated from Observed behaviors of q(t)

$$- q(t) = q_1 e^{-(\frac{t}{\tau})^n}$$

- n is found and τ is calculated

Curve Fit	EUR (MMSCF)	Qf (MSCFD)
Stretched Best Fit Whole	9629.0	10845.4
Stretched Calculated Values	5605.5	6821.9

Conclusions:

- Duong's method is generally accurate for Barnett unconventional wells, especially in early production
- Stretched exponential produces similar results
- Hyperbolic and Harmonic decline (and b>1) are useful in modelling early flow regimes
- The stretched exponential model with calculated and best fit whole curves yielded realistic forecasts that agreed with RTA and the probabilistic analyses

RTA

Data	Analysis	Results
 Production Rates Langmuir Curves Pressure Data Tubing Casing 	 Log-log rate vs. time Flow regime Analytical Model: Type curve FMB 	 Reservoir Parameters: OGIP EUR Permeability A_{SRV} Geomechanical
 Reservoir Data Initial Pressure Temperature Completion Design Stages Clusters 	 History matching Probabilistic Analysis: Altered-case scenarios and their likelyhood 	• Fracture Parameters: • X_f • F_{CD} • X_l

Background and Theory

Flow Regimes of Interest:

Bilinear Flow:

- ¼ slope
- Early flow
- Fracture drainage

*Can occur prevalently in naturally fractured systems or when $x_f > h_f$

Linear Flow:

- ½ slope
- Majority of flow
- Occurs after fractures
 have stabilized

Boundary Dominated Flow:

- Unit slope
- Late flow
- Reservoir boundaries
 have been realized

⁽¹⁾ Fekete.com

RTA: Johnson WD 'A' (SA) 42H

Well Spacing Optimization

Base Model

Base Properties:

X _{f,1/2} (ft)	Gohfer
F _{CD}	Gohfer
Φ (%)	4.0
S _w (%)	30.1
k _m (nD)	350.0
P _i (psia)	3500.0

Economic Viability

Acknowledgements

- We would like to thank Dr. Amirmasoud Kalantari Dahaghi
- Devon Energy for the provided data
- Schlumberger, IHS Harmony, Gohfer, CMG for providing academic licenses

Thank you!

References

- 1. J. Schmoker and T. Hester, "Organic Carbon in Bakken Formation, United States Portion of Williston Basin," *The American Association of Petroleum Geologists Bulletin,* vol. 67, no. 12, pp. 2165-2174, December 1983.
- 2. C. Sondergeld, K. Newsham, J. Comisky, M. Rice and C. Rai, "Petrophysical Considerations in Evaluating and Producing Shale Gas Resources," in SPE Unconventional Gas Conference, Pittsburg, PA, 2010.
- 3. G. Archie, "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics," Society of Petroleum Engineers, Dallas, TX, 1941.
- 4. B. Zhang and J. Xu, "Methods for the evaluation of water saturation considering TOC in shale reservoirs," Journal of Natural Gas Science and Engineering, pp. 800-810, November 2016.
- 5. R. Loucks and S. Ruppel, "Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Woth Basin, Texas," *The American Association of Petroleum Geologists Bulletin,* vol. 91, no. 4, pp. 579-601, April 2007.

Questions? Photoelectric Logging

- Measures the average atomic number of the elements in formation as the Photoelectric Effect (PE). Known PE values for common lithologies are generally very accurate.
- Usually combined with density for a Litho-density Log
- Photoelectric absorption coefficient (U) and photoelectric absorption of matrix rock (U_{MA}) can be calculated:

U = PE * RHOB $U = U_{MA} (1-PHIE-VSH)$

 This U_{MA} can be plotted versus the apparent matrix density of known lithology types.

Source: Crain's Petrophysical Handbook (https://www.spec2000.net/13-lithpdn.htm)

Questions? Photoelectric Logging

Johnson WD 'A' (SA) 41H

